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Abstract

We present LAMANAS', a novel neural architecture search method that is loss and model agnostic. The algorithm
searches for and trains a network architecture that generalizes well and adapts quickly to unseen tasks. This is achieved
by finding high-performing, meta-learned model and architecture parameter initializations using a self-supervised loss.
The loss is parameterized as a neural network which allows the neural architecture search to learn an optimal loss
landscape for each task without imposing a strong prior. Using a simple long-short term memory (LSTM) recurrent
neural network for the loss architecture in tandem with a inner product loss proxy, between the gradients of the
self-supervised loss and gold-standard cross entropy, yields state of the art improvements over MetaNAS.

Mentor: Yao Liu & Rachel Gardner
1 Introduction

In recent years, the machine learning community has made several significant strides in the quest toward Artificial General Intelligence
(AGI), and away from "narrow" intelligence. In 2015, motivated by the human capacity to generalize concepts successfully after seeing
only one or a few examples, a phenomenon known as one-shot learning, [1] introduced the Omniglot and Minilmagenet datasets and their
corresponding benchmarks. Models must be equipped to learn robust and flexible representations if data from only a small set of examples
if they are to be successful in the few-shot setting, while maintaining speed and efficiency. In parallel, Model Agnostic Meta-Learning
(MAML) [2] introduced a model-agnostic gradient-based approach proposed by Finn et al. that optimizes parameters of a model for rapid
adaptation to new tasks. MAML finds good model initializations such that adaptation to a new task is efficient and can be achieved in a
few-shot setting. Neural architecture search (NAS) was proposed in 2017 [3] to automatically learn network architectures that maximize
performance on a specific task. It does so by using an RNN meta-controller to predict a sequence of tokens that specify architectural
hyper-parameters of the learned architecture.

In 2020, MetaNAS [4] combined gradient-based neural architecture search (NAS) methods with gradient-based meta-learning methods.
They used a flexible model architecture during meta learning, which enabled fast and cheap task adaptation, achieving state-of-the-art
performance on the standard few-shot learning benchmarks, Omniglot and MinilmageNet, at the time of publication. Finally, [5]
introduced Self-Adaptive Visual Navigation (SAVN) which aims to design robust and flexible learning algorithms for robotics domains.
This is accomplished using a self-supervised loss, meaning the agent learns on its own as it interacts with the environment. The authors
point out what all humans know: that learning is a continuous process ad infinitum. Inference need not come at the expense of training.
Whether learning to learn or learning to learn how to learn, model agnostic or loss agnostic, the aim of these approaches is to achieve
high-performance and good model generalizability, and to do so using minimal resources. Hence, we propose LAMANAS for loss and
model agnostic meta learning of neural architectures for few-shot learning.

2 Related Work

'The code implementation is on GitHub at: https://github.com/sergiogcharles/lamanas
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NAS [3] proposed the serialization of neural network topologies
whereby the architecture could be encoded as a sequence of tokens,
i.e. operations at each layer. They were able to train an RNN meta Mets looring

controller to produce the sequence of architectural hyperparam- Compute eta srociure & meta
eters aq.7, which is a sequence of actions in the reinforcement e
learning-theoretic sense [3]. NAS works by using the RNN con- i

‘ Loss Agnostic Meta Learning of Neural Architectures ‘

troller to sample a candidate child model, training it to convergence Task Learning
and then evaluating the reward R, usually measured by the accu-
architecture & loss weights

racy, of the child model on a held-out validation set, which induces
a controller update signal. However, the method uses a REIN-
FORCE [6] proximal policy-based reinforcement learning, which
is prohibitively expensive. In light of this, Liu et al. introduced Figure 1: An overview of the LAMANAS algorithm.
Differentiable Architecture Search (DARTS) [7] that characterizes

neural architecture search as finding architectures as sub-network

graphs of the directed acyclic super-network graph, which eschewed the need for an RNN controller. It also stacks the learned computation
normal and reduction cells to form a convolutional neural network, as introduced by NASNet [8].

]
Compute task loss

MAML [2] is a meta-learning algorithm, proposed by Finn et al., that optimizes parameters for rapid adaptation to new tasks in the
few-shot setting. Each task 7; in the large training set 7Tiin has a small meta training Dtﬁm dataset and meta validation dataset DZ;i In the

case of n-way, k-shot image classification, 7; consists of the n image classes, Dl

ruin as k examples for each of the classes, the objective is

to correctly assign class labels to images in Dval [5], and we evaluate on the test task T Of unseen classes. The MAML training objective
is given by:
min Y L(0— AVeL(6, Dyii,), D). (1)
Ti~p(Tiain)
where 6 is optimized to prov1de good initializations, which allows for fast adaptation to unseen test tasks. We adapt the parameters for
the task on the training set Dl by performing the task learner update § — aVyL(6, D, iteratively and then optimize 6 on the task

tram)
validation set D\Zi

train

Given model parameter initializations 6, let W7, denote the manifold of optimal parameters for the task 7;. Then Reptile [9] is a
gradient-based meta-learning method that finds the parameters 6* close to all of the manifolds of optimal parameters for all tasks. Namely,
for a metric on parameters space d (0, Wr; ), it will optimize ming ]E7; [ d(p, W) ] by performing SGD such that the distance between
0 and the optimal manifold Wy; is small for all tasks. MetaNAS [4] is a method, proposed by Elsken et al., that combines gradient-based
neural architecture search (NAS) methods, such as DARTS [7], with gradient-based meta-learning methods, such as MAML [2]. Tt
optimizes meta-architecture parameters oy, in tandem with meta-model parameters 6., during meta-training. The meta-parameters
Ometa and Oy, are able to adapt quickly to a new task 7; with only a few labeled data points, i.e. for n-way, k-shot tasks. That is, it can
adapt the meta-architecture to a fask dependent architecture [4]. While MetaNAS presents a model-agnostic neural architecture search, it
still introduces strong priors with hand-crafted task objectives [,tram Finally, SAVN [5] introduces a loss-agnostic approach to MAML by
learning a self-supervised task interaction objective, which proves useful in "learning how to learn" based on an agent’s trajectory.

3 Dataset & Features

All experiments were run on the Omniglot dataset, which consists of 1623 unique characters taken from 50 alphabets hand-drawn in pen
or pencil. We follow the same evaluation method used in [4], namely, the n-way, k-shot setting as proposed by [10]. A few-shot learning
task is constructed by first sampling n classes at random from Omniglot and then sampling k£ examples for each class. We used n = 20
and k = 5 for a 20-way, 5-shot model evaluation setting. Each example in Omniglot is (1, 28, 28), each batch is (20, 1, 28, 28), and we
use 1 test example per class. Lastly, we use a Vinyals split as in [10]. The architecture always begins with a constant stem which is simply
a 2-D convolution followed by a 2-D batch normalization layer. The rest of the architecture is determined by a search of the architecture
space over a set of candidate operations, e.g., 3 x 3 convolutions, 3 x 3 average pooling, and the zero operation. The learned architecture
always performs feature extraction, and we will explore different learned architectures in Section 5.

4 Method

Adopting the notation of MetaNAS and SAVN, (D;’:;m, D\Zl) is the sampled task, LZ:;I is the supervised loss for the task 7;, @k is a

K-step task learner algorithm like SGD, and (6, ) are model and architecture parameters, respectively. For task 7;, 61, := 6, are
the model parameters, a7, := «; are the architecture parameters, and (0}, o) = Pk (0, « Dtram) are the optimized parameters. We
denote the meta-parameters by # and «. Methods like DARTS hold « constant so we optimize the task model parameters 6; by using
the task learner @ g (60, (constant s Dmm) which applies the following one-step SGD update K times: 6; D1 (6, Qconstants D7

lrain) -
91' - )\mskve‘cucliin(gia Cconstant s Dtl'd-lﬂ) [4]
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Figure 2: Details of the LAMANAS algorithm.

In constrast to these methods, we construct a K -step task learner ® i that, for task 7;, optimizes both the task model parameters 6; and
the task architecture parameters a;; with model learning rate A,sx and architecture learning rate &5, commensurate to MetaNAS. That is,
we write the one-step update as [4]:

. DT
[0 ] - P (Hi,a“DT’ ) = |: )‘tdSkvez’tram(elva17Dtrain) )

train/ * Ti
i gtaskv [’traln(ei’ Qs Dtrain)

for Ltﬁun the task’s self-supervised training loss. We repeat this update K times until we converge to the optimized task parameters 6; and

a;:

|:Z :| = (I)K(ezaoéuplrz

R tra.ln)
1

We use the following meta-objective to find a meta-architecture with parameters that are fast adapters when given new tasks:

. . T
ré{lcxnﬁmeta(O,a,@K) :Iél,lan Z Eval(il)K(H o Dmln) Dk

Ti (p* T
)= rglgl Z L5607, a;, D
T""p(ﬁmm) T’\“p(ﬂmm)

val traln) (3)

Furthermore, we update the meta-objective with a meta-learning algorithm like MAML:

* Ti
[0] 00,0, D7 ) = | & 7 Ames 2T () Ve/ivalw of D) “
- e & — Smela Zﬂwp(ﬂmin) v L"Vd] (0* DVdII)

where 0 and o denote the parameters optimized by the K-step task learner. For notational simplicity, we will eschew the explicit
reference to the K -step task learner @ i and, instead, simply write one step of the SGD update inside our meta-learning objective:

min Z ‘Cval(o )‘t%kve‘ctram(o a, IDTl ) ftaskv ‘Ctrdm(o o ,Dtr,clun) D\ZI) (5)

train
0,

ﬁNP(,]Tmm)

where we, implicitly, mean that we perform the K -step task learner updates to 6 and «, using the same dataset Dtmm It is not prudent to
split the dataset in the small data regime of few-shot learning [5]. We let Elﬁm be a feed-forward neural network parameterized by ¢. The

training objective will be a modified version of Equation 5 (see Appendix for a proof of the approximation):

min Z ‘cval(o Atﬁbkve[’tram(e « th;m; ) a — ftaSkv ‘Ctram(a o Dz;im; )7DV31) =~

&
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(6)

where ¢ is fixed during inference, according to SAVN [5]. Algorithm 1 shows a detailed implementation of the loss-agnostic MetaNAS
approach using MAML for the meta-optimizer, DARTS for neural architecture search, and SGD for the K-step task learner. Al-
gorithm 2 shows a varied implementation using Reptile [9] as the meta-learner, whereby in order to update the self-supervised



loss meta parameter ¢, we must update it in our task-learner according to the loss of the neural network V¢£Ham(9i, Q;j, Dﬁin; bi).

Algorithm 1 LAMANAS: Loss and Model Agnostic Meta ~ Algorithm 2 LAMANAS Variant with DARTS and MAML
Neural Architecture Search with DARTS and Reptile

Require: Distribution p(7,in) over tasks

Require: Distribution p(7,i,) over tasks Randomly initialize 0, o, ¢
Randomly initialize 0, o, ¢ while not converged do:
while not converged do: Sample batch of tasks 7; ~ p(Tirain)
Sample batch of tasks 7; ~ p(Tiain) for all 7; do:
for all 7; do: 0; < 0
02- — 0 Q; <
a; — Gi < ¢
forj=1,..., K do: forj=1,..., K do: > Task learner with K update steps.
9 <~ 0 - Ataskveﬁtram(eu Qg trém’ ¢) finds 0: and Ol
QG < Oy — €td5kv Eu—mn(eu Ay, Dtrdln’ ) 0 A 0 - )\t‘“kv‘g‘clram(eﬂ al’ lram7 ¢)
end for QG < Q — gtaskv Eu—am(eu Qg Du—dm; )
end for end for
0 < 0 — Ameta ZTNp Feain) vGEZz:](e* a DTI) i — ¢ — deskv¢£traln(027 Qi Dtram§ )
o< o — gmela ZTNP ‘Cv‘i](e* Ol DZ}l) end fOl‘ % . 3
Ticuin) . T > Meta learner update via Reptile, sampling new tasks
o <_' ® — Xmeta Zﬁwp(ﬁmin) quﬁ\,al(e ,Dvafl) 0 < 0 4+ Apeta ZTNp (Toun) (9* _ 0)
end while O 4= 0t Emeta Y7 (T (O — @)
¢ — ¢ + Xmeta Z’Ti,\,p lmin) (¢ QS)
end while

5 Experiments & Results

As such, we conducted experiments using the meta neural architecture search method in Algorithm 2 by searching for a CNN that consists
of stacked computation cells, like in DARTS [7] and NASNet [8]. We employed two types of cells, namely a normal cell which preserves
the input dimension and a reduction cell which halves the output dimension by using a stride of 2. We designed many variants of the
learned self-supervised loss neural network L‘mm(ﬁl, oy, D iins @1) for each task 7; by varying its architecture as a feed-forward neural
network (FNN) or a long short-term memory (LSTM) RNN. We used DARTS as the task optimizer and Reptile [9] as the meta learner for
200 meta epochs with 5 tasks in each meta batch. Furthermore, we experimented with the use of a cross entropy residual connection in the
learned loss. In particular, during the task learner update, we computed the cross entropy between the CNN logits z7: and the ground truth
labels ytram and added it to the first layer output of the FNN/LSTM learned loss.

We leveraged a meta loss proxy to guide back propagation of the loss neural network and perform the third SGD task learner update
in Algorithm 2. For the first proxy, we measure how well the learned loss approximates the gold-standard loss, i.e. cross entropy loss
EZ:;I(@“ o, DZ;m) = CE(z;, yzzin) for each task 7;. This was modeled by maximizing the similarity between the output of the cross
entropy loss and the learned loss using the following mean squared error difference:

£E. =MSE[CE(z",p 5. ), LB (05 05, DL 1)) ©)
Another proxy method we used was to maximize the Ly inner product similarity between the gradients with respect to both meta

parameters 6 and « of the self-supervised loss £ and the cross-entropy loss, given by Equation 6:

train
)_ A<v0‘CU'211I1(0 a DT ) VGCE( 7y[ram)> €<V LZ’—;IH(Q Q@ D[Z—;.lﬂ) v CE( 7ytrd1n)> (8)

train

Ll = CE(zT

proxy 5 ylreun

In addition, we investigated the marginal benefits of using pre-trained layers in the meta architecture for the meta model CNN to learn
and extract stronger visual representations. For pre-training, we used the first four pre-trained layers of ResNet-18. Before using the
ResNet-18 feature extraction, for a batch size of N, we transform our input from (NN, 1, 28, 28) to (NN, 3,224, 244) by upsampling and
applying a 1x1 convolutional filter. This is followed by another convolutional layer after the 4 layer encoding of the ResNet layers.
Unfortunately, our experimental results indicates that this harms performance, attaining low accuracy on the held out test set.

The layers of the FNN and LSTM loss neural networks use orthogonal initialization [11] for dynamical stability. The networks take
as input the concatenation of the logits produced by the meta model with the ground truth labels for each batch and embeds it using a
linear projection transformation, shown in Figure 2. In both cases, we also have the option of adding the output of the cross-entropy
loss on the batch of predictions as a residual connection, which is followed by an ELU non-linearity with a tunable hyperparameter



Accuracy (%)

Variant  Residual Connection = Loss Proxy Test Train  Mean Number of Parameters
Baseline No N/A 825 571 413,215
FNN Yes MSE 416  50.0 398,533
No MSE 75 6.5 327,590
Yes Inner product 43.8 499 402,351
No Inner product 6.0 5.0 299,200
LSTM Yes MSE 89.8 610 398,533
No MSE 5.5 5.1 327,590
Yes Inner product 914  61.3 435,067
No Inner product 6.0 4.8 299,200

Table 1: Train and test accuracy across variants and hyperparameters, i.e. residual connections and loss proxy, compared alongside
the baseline model. The best variants is bolded, namely an LSTM loss neural network using a inner product loss proxy and residual
connection.

Self-supervised loss neural network PCA contour plot @t=1 Self-supervised loss neural network PCA contour plot @t=15 Self-supervised loss neural network PCA contour plot @t=20 Self-supervised loss neural network PCA contour plot @t=122
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Figure 3: Snapshots of the geometry of self-supervised loss FNN function for the self-supervised loss network over hand-selected
meta-epochs 11, 20, 111 and 122. The loss neural network is an FNN with residual connections and MSE loss proxy. *At ¢ = 1 epochs,
the loss is almost equivalent to cross entropy loss.

defaulted to o = 1 which, unlike ReLU, allows negative values to pass. As seen in Table 1, the residual connection significantly improves
performance. The FNN architecture includes another linear layer and finally we take the mean over the losses in the minibatch. The LSTM
architecture, illustrated in Figure 2, consists of 5 stacked many-to-one LSTM cells which takes as input the outputs of the embedding of
the logits in RV *H | reshaped to lie in R'*~ > We initialize the hidden and cell states as the ground truth labels y7:. The FNN loss
neural network achieves an accuracy of 41.6% with a inner product loss proxy, slightly higher than the 43.6% with an MSE loss proxy. As
shown in Table 1, the RNN LSTM loss neural network architecture outperforms the benchmark MetaNAS with a train and test accuracy
of 61.0% and 91.4%, respectively. We hypothesize that this occurs because loss network is being adapted temporally, which lends itself
well to the LSTM mechanism. To plot the loss neural network as a function of two logits z; and 2z, as shown in the Figure 3, we used a
principal component analysis (PCA) by using a Singular Value Decomposition (SVD) on the model parameter matrix © € R™* where
© = UXV'T for the first layer of the neural network, U € R™*™ and V' € R"*" are orthogonal, and the diagonal ¥ € R™*" is the
matrix of singular values of ©. This yields the principal axes of the parameters of the loss neural network. The k-reduced parameter is
given by © = OV}, where V}, is the first k columns of the orthogonal matrix V. Namely, Figure 3 shows contours plot of the the loss
neural network as it adapts over meta epochs to learn the optimal loss landscape for various interesting snapshots. Interestingly, the
geometries of the losses being learned are, in certain cases, rotations of the baseline trough-like cross entropy geometry. As we progress
in meta training, the loss geometry converges to a trough and absolute height increases with increasingly larger gradients, which could
guarantee faster convergence. That is, if the architecture is in state (6, o), then the amount of work done to increase the self-supervised
loss becomes arbitrarily large as we perform meta-training.

6 Conclusion

We have presented a loss and model agnostic meta-learning approach to neural architecture search using a self-supervised loss. We find
that the dynamic LSTM self-supervised loss outperformed the constant cross entropy loss used by MetaNAS. In particular, the geometries
of the loss function tend have increasingly large curvature which seems to improve training and, consequently, allows the meta architecture
search to be a fast adapter. In future work, we intend to analyze the relative merits and limitations of the asymptotic, dynamical stability
of such self-supervised loss neural networks, which attain arbitrarily large magnitudes during meta-learning.



7 Appendix

Proof. We invoke a first order Taylor series expansion to prove Equation 6, omitting reference to ¢. A loss L is a scalar-valued function
L : R™ — R, which has second order Taylor series approximation centered around @ € R™ given by:

L(x) =~ L(a)+ DL(a)(x —a) + %(:c —a)'HL(a)(x — a) )

for DL(x) the matrix of partial derivatives of £ and H L(x) the Hessian of £. We approximate the summand in the following:
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using the second-order Taylor series expansion:
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where the matrix of partial derivatives is

T 9 T 0 Ti ! 0 T '
D‘C’val Dv;l = v«9LV211 <|: :| DV;1> Voucval <|:Oé:| DV;1> .
Thus, ignoring the second-order Hessian term, we can write Equation 10 as:
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which minimizes the supervised validation loss ,C ' and maximizes the similarity between the gradients, with respect to both 6 and «, of
the self-supervised training loss £’ and the superv1sed validation loss [,wl Therefore, during inference, when ,Cval is unavailable, we
can still perform training if the gradients of the losses are similar [5]. That is, we want the self-supervised loss LT to learn to emulate

train
the supervised loss Eval Choosing such a self-supervised L to guarantee this property is difficult and, thus, it is natural to learn the
self-supervised training loss.

train

train

O
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Abstract

Despite the mainstream of usage of neural networks in
increasingly difficult tasks in computer vision and natu-
ral language processing tasks, optimal network architec-
tures are traditionally attained after countless manual ex-
periments and rounds of redundant training iterations. We
propose a different approach that incorporates Neural Ar-
chitecture Search (NAS) method [10] and the lottery ticket
hypothesis [4] — for a randomly initialized neural network,
there exists a sub-network architecture that trains and per-
forms at least as efficiently as the super network. Our re-
sults show that both variants of this search — the first by
pruning model parameters, and the second by pruning ar-
chitecture parameters — return a model sub-network archi-
tecture that achieves state-of-the-art performance without
expensive memory or time usage.

1. Introduction

In the past decade, neural networks have been imple-
mented for increasingly difficult tasks in computer vision
and natural language processing domains. Yet despite their
flexibility and utility, optimal network architectures remain
difficult to design; state-of-the-art models are the fruits of
countless manual experiments and rounds of trial-and-error
training iterations. To bridge this gap, Zoph and Le pro-
posed the use of Neural architecture search (NAS) [10], a

method that automatically learns network architectures and
maximizes performance on a specific task in tandem. The
most obvious drawback of this work: it uses an RNN meta-
controller with proximal policy optimization which is too
computationally expensive for most ML development tasks.
In fact, the original NAS [10] used 450 GPUs for 3-4 days.

Consequently, there have been recent attempts to de-
crease the runtime of NAS. Efficient NAS [7] (ENAS) in-
troduces the notion of searching for child models as sub-
graphs over a directed acyclic (DAG) super-graph. Local
computation nodes have parameters that are shared among
child models in the search space, which yields a 1000 x im-
provement over NAS. NASNet [11] defines the architecture
of a ConvNet as stacked modules of two types of cells: a
normal cell which preserves input dimension and a reduc-
tion cell which halves output dimension by using a stride
of 2. They show that a well-chosen cell yields desirable
transfer learning on downstream tasks. The Differentiable
architecture search algorithm (DARTS) improves upon both
of these methods by making the search space over archi-
tectures continuous via a softmax over the set of candidate
operations [6].

However, DARTS still has prohibitively expensive mem-
ory usage due to redundant candidate architecture paths.
Hence, we propose a neural architecture search method
based on the lottery ticket hypothesis [4] which states that
for a randomly initialized neural network, there exists a
sub-network architecture that has commensurate accuracy
and trains at least as efficiently as the super-network. More
specifically, we propose two variants of this search: the first
variation conducts a neural architecture search before prun-
ing model parameters during train time based on our lottery



ticket hypothesis; the second variation conducts a neural ar-
chitecture search that prunes network architecture parame-
ters before performing a standard training loop. We theorize
that regardless of the variant chosen, by performing iterative
or one-shot pruning when training the architecture and child
models, the sparse sub-network neural architecture winning
ticket can be found in at most as many iterations, and with
at least the same accuracy, of the model architecture found
by DARTS.

2. Related Work

Neural architecture search (NAS) was proposed in [10]
as a method to automatically learn network architectures
to maximize performance on a specific task. The origi-
nal implementation of NAS serialized CNN and RNN net-
work topology representations as a sequence of operations
at each layer. That is, they surmised that the “’structure and
connectivity of a neural network”, namely the architectural
hyperparameters, can be encoded by a sequence of tokens.
Thus, they train an RNN meta controller to produce the se-
quence aj.7 of hyperparameters used to design the archi-
tecture, which can be construed as a sequence of actions in
the sense of reinforcement learning [10]. The NAS search
space is the set of operations that can be performed between
layers of a neural network, which induces a strong prior on
network design. The controller samples a candidate model
called the child model, trains it to convergence, and evalu-
ates the reward R, measured by the accuracy, of the child
model on a held-out validation set. The controller uses the
objective of maximizing expected reward as an update sig-
nal.

More precisely, the NAS search algorithm iterates over
several possible child models in its search space and opti-
mizes expected reward, e.g. model size, accuracy, or la-
tency. The meta-controller RNN optimizes the following
objective [10]:

‘](00) = EP(al:T;GC)[R] 1)

In the original NAS paper, they optimized the RNN con-
troller parameters 0 with REINFORCE [9] on the policy
gradient [10]:

T
Voo J(0c) =Y E[Ve. log P(ailai-1)1:0c)R]. (2)

t=1

because R is non-differentiable.

Furthermore, we can represent a child model as a DAG
with nodes as “local computations” and edges as the "flow
of information” [7]. Efficient NAS (ENAS) [7] introduces
the notion of searching for architectures as sub-graphs of the
directed acyclic super-graph. That is, this DAG is represents
a superposition of all possible child models. These local

computation nodes have parameters and, thus, ENAS shares
these parameters among child models in the search space,
which yields a 1000x improvement over the original NAS
method.

Differentiable Architecture Search (DARTS) [6] es-
chews the need for a proximal policy-based method. In
DARTS, they learn a computation cell which can be stacked
or recursively concatenated to create a convolutional neural
network or recursive neural network, respectively. A com-
putation cell can be represented as a DAG consisting of a
topologically ordered set of n nodes. Let z(*) represent a
latent representation and each edge (4, j) represent an op-
eration 0(*7) on z(*). Using the topological ordering, we
can compute the node based on the operations of preceding

nodes [6]:
2@ = Zo(i’j)(x(i)). (3)
i<j
If O denotes a set of our candidate operations, DARTS
makes the search space continuous by considering a soft-
max over possible operations:

alid)
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where (/) are learned parameters between nodes i and
j; finding these variables is equivalent to neural architecture
search, which now allows us to employ a standard bi-level
optimization. When we have found the neural architecture,
we collapse its superposition state by discretizing the mixed
operations 6(9) to o(hd) = arg maxXeco agi’j). Let Liain
denote the training loss and let L, denote the validation
loss. We use a bi-level objective proposed in DARTS:

min Lyy (0" (), c)

(&)

subject to ™ () = arg rnein Lirain (0, ).

which determines the optimal a* to minimize validation
loss Lya(6*, &), where the optimal model parameters 6*
is 0* = argming Lyin(0, @*). The inner optimization is
very computationally expensive and, thus, DARTS uses an
unrolled approximation of [6]:

v0£val(0* (OL), Oé) ~ vaﬁval(e - §V9 (97 Ol), a) (6)

which approximates 6*(«/) by only using a single step of
SGD to avoid performing the inner optimization until con-
vergence.

However, the memory requirements of DARTS are still
cumbersome because GPU consumption is proportional to
|O]. Methods like MnasNet [8] employ optimization with a
multi-objective of accuracy on a target task and inference



time latency. Likewise, ProxylessNAS, proposed by Cai
et. al [1], redresses the problem of high memory consump-
tion by using path-level pruning which binarizes the asso-
ciated softmax probabilities of the real-valued architecture
parameters «. They also present “hardware-aware neural
network specialization”, which optimizes the architecture
for the specific hardware device [1].

We make use of the results of the lottery ticket hypoth-
esis [4], which states that for a randomly initialized neural
network, there exists a sub-network architecture that has at
least as good test accuracy and trains at least as efficiently
as the super-network. Such a winning ticket sub-network is
identified and trained as follows [4]:

1. Initialize a neural network fy (x) for parameters 6
distributed according to the training data 6 ~ Dip.

2. Train the network for £ iterations until we have param-
eters 6;.

3. Prune p% of the parameters in the network, according
to magnitude, forming a mask M.

4. Reset the remaining parameters to their respective 6
values, which yields the winning ticket f g, ().

3. Methods

In light of the lottery ticket hypothesis [4], we posit that
by performing iterative or one-shot pruning during neural
architecture search with DARTS, the sparse sub-network
neural architecture winning ticket can be found in commen-
surate time (at most as many iterations as the architecture
found by search) and with commensurate accuracy (at least
the same accuracy of the architecture found by search).

This is distinct from NAS methods that optimize on a
multi-objective of model size and accuracy on a target task,
as seen in [3], because these methods do not leverage the
notion of a winning ticket from the lottery ticket hypothesis.
That is, they are not searching for sparse child neural archi-
tectures, but instead small neural architectures; this would
generally improve inference time latency but does not ad-
dress the computational expensiveness of modern NAS.

We search for an architecture of a ConvNet as stacked
computation cells, like in NASNet [11]. We use two types
of cells: a normal cell which preserves input dimension and
a reduction cell which halves output dimension by using a
stride of 2. NASNet showed a well-chosen cell yields desir-
able transfer learning on downstream tasks. We use DARTS
[6] as the NAS method, which eschews the meta-controller
configuration. Operations are limited to convolutions, aver-
age pooling, max pooling, and the zero operation.

Following the notation of ProxylessNAS [1], let
N (es, ..., ey,) denote the over-parameterized convolutional
neural network, where e; is an edge in its DAG represen-
tation of a topologically ordered set of its n nodes. Let

z® represent a latent representation and each edge e; ;
represents the operation o(*7) on z(*). For our N candi-
date operations O, we make the search space continuous
by defining a mixed operation as a softmax over possible

o (8:3)

“—7yo(x) where
orco€ o
a("7) are learned architecture parameters between node i
and node j. Since each edge is a mixed operation, i.e. a
linear combination of the N = |O| candidate operations
o(x) = vazl p;0;(x), we can intuitively represent a mixed
operation by N paths where each path is weighted with
probability p;. When performing the neural ticket architec-
ture search to find the winning neural ticket a*, we apply
an architecture-dependent mask M,,:

operations [6]: 60" (z) = 3 .

0(z) = Eonoom,[0(2)]. )

to prune the architecture parameters a. When we retrain
the model fy with optimal architecture o™, we use a model-
dependent mask M to prune the parameters 6 of the model
fo. Since we effectively hard-prune the choice of candidate
operations when selecting the architecture with highest can-
didate probability, this will induce significant regressions in
performance. Therefore, it is important to retrain the model
fo with the sparse architecture. Let L, and Ly, and de-
note the training and validation loss, respectively. We use a
bi-level objective proposed in DARTS:

min Ly (0% (@), @)

®)

subject to 6% («) = arg mein Lirain (6, ).

Iterative pruning is performed to identify the neural win-
ning ticket. In the generalized method, the cell architecture
is trained in tandem with the pruning program of the lot-
tery ticket hypothesis until early stopping, and accuracy is
measured on a held-out validation set. Then we retrain the
model with the architecture found during the search using a
similar pruning program. We developed two approaches to
performing the lottery ticket pruning, which are as follows:

Variant 1: We perform DARTS neural architecture
search to find the optimal architecture a*. Then, when re-
training the model fy with architecture o*, with a sparsity of
p € (0,1), we prune p'/™ of the lowest magnitude parame-



ters for n rounds. The algorithm is enumerated as follows:

Algorithm 1: Variant 1 of LNAS

Randomly initialize g ~ Dyain, o ~ Dyar;
Search for optimal architecture o*

while not converged do
1. Perform the v gradient update
a4+ a—nNValya(0 — EVLyain (0, @), «) for
k iterations;
2. Perform the model 6 gradient update
0 + 0 — EVgLyin(0, @) for k iterations;
end
Re-train model parameters 6 of optimal architecture
a* to find (o, 0%)
for n pruning iterations do
1. Perform the 6 gradient update
0 + 0 — EVgLiyin(0, @) for k iterations;
2. Prune p'/™ of smallest magnitude model
parameters by applying mask: 6 ® Mp;
end
return winning neural ticket (a*, 0*)

convergence. The algorithm is as follows:
Algorithm 2: Variant 2 of LNAS

Randomly initialize 8y ~ Dyain, o ~ Dyar;
Search for optimal architecture o*

for n pruning iterations do
1. Perform the o gradient update

a4+ a—nNValya(0 — EVeLyuin(0, @), ) for
k iterations;

2. Perform the model € gradient update
0 + 0 — £V Lyuin(0, @) for k iterations;

3. Prune p'/™ of smallest magnitude architecture
parameters by applying mask: o ©® M,,.

end
Re-train model parameters 6 of optimal architecture
a* to find optimal (a*, 60%)
while not converged do
1. Perform the # gradient update
0+ 0 —EVLipin(0,);
end
return winning neural ticket (., 0)

Although we did not complete a full grid search of prun-
ing both model parameters and architecture parameters at
various sparsity levels, to determine the relative utility of
each variant in a wider scope, it is useful to consider the
more generalized version of our algorithm:

For fixed 0, we optimize the architecture parameters o
with SGD on the validation set, using the unrolled approxi-
mation of Equation 6. Then during retraining, we optimize
the model parameters # with SGD on the training set until
convergence, while pruning p'/” of model parameters every
k iterations of SGD for a total of n rounds of training.

Variant 2: We perform path-level pruning, in the sense
of ProxylessNAS [1], whereby with a sparsity of p € (0, 1),
we prune p*/™ of the lowest-magnitude architecture param-
eters o during the neural architecture search. This cor-
responds to pruning candidate operations or, equivalently,
paths for each edge of the computational graph. As before,
during this step, we use the unrolled approximation in Equa-
tion 8. Then we re-train the model fp, with the optimal ar-
chitecture o* found during the previous step, via SGD until

Algorithm 3: Generalized LNAS

Randomly initialize 8y ~ Dyain, o ~ Dyar;

Search for optimal architecture o

for n pruning iterations do

1. Perform the « gradient update
a4+ a—nNVaLlya(0 — EVeLiwin(0, @), «) for
k iterations;

2. Perform the model € gradient update
0 + 0 — £V Lyuin(0, @) for k iterations;

3. Prune p'/™ of smallest magnitude architecture
parameters by applying mask: o ® M.

end
Re-train model parameters 6 of optimal architecture
a* to find optimal (6%, o)
for n pruning iterations do
1. Perform the # gradient update
0 + 0 — EVgLiyin(0, @) for k iterations;
2. Prune p'/™ of smallest magnitude model
parameters by applying mask: 6§ © M.
end
return winning neural ticket (o, 0)

That is, we perform k£ SGD update steps for the DARTS
neural architecture search, using the unrolled approxima-
tion in Equation 6. Then, with a sparsity of p € (0, 1),
we prune p*/™ of of the smallest magnitude architecture pa-



rameters, which is a form of path-level pruning of the NV
possible operation candidate paths [1]. We do this for n
rounds until we have found the optimal neural architecture
a*. Next, we optimize the model parameters # with SGD on
the training set for k steps. Then we prune p'/™ of the small-
est magnitude model parameters. We repeat for n rounds to
converge to an optimal 6* and «*, which is the theorized
winning neural ticket.

4. Data

For all experiments, we train and validate all exper-
iments on the CIFAR-10 dataset [5], which consists of
60,000 32 x 32 colored images of 10 different classes.
We utilize a 50,000 to 10,000 train-test split of the
images; all final models were validated on Top-1 accu-
racy performance on the test dataset. No pre-processing
or filtering was applied prior to the training of our networks.

5. Experiments
5.1. Lottery Ticket Neural Architecture Search

For each variant, we train models on different sparsity
levels and evaluate their relative performance on the
CIFAR-10 dataset to a baseline model constructed via
differential architectural search (DARTS). Our goal is
determine how the number of parameters remaining affects
model accuracy and training time of the optimal neural
winning ticket.

Baseline DARTS Model: We reimplemented the DARTS
search on the CIFAR-10 dataset using the nni library as
proposed in the original paper [6]. Our search space O of
candidate operations consisted of 3 x 3 and 5 x 5 separable
convolutions, 3 x 3 and 5 x 5 dilated separable convolutions,
3 X 3 max and average pooling, identity mapping, and a
zero mapping. All operations were stride one and padded to
preserve spatial resolution. The convolutional cell consisted
of 7 nodes, and was placed after a ReLU activation block
and before batch normalization.

Our neural network was optimized with respect to cross-
entropy loss, a metric known for its strong performance
in classification tasks. We perform 10 epochs of neural
architecture search on the O search space described above,
followed by 20 epochs of a standard training loop. Both the
search and train loops utilized a stochastic gradient descent
(SGD) + Momentum optimizer with 0.9 momentum and
3.0 x 10~* weight decay; the initial learning rate of 0.025
was adjusted according to a cosine annealing scheduler.
Batch size was set at 64.

Initial Architectural Search: For Variant 1, observe that
all experiments focus only on pruning model parameters of

the baseline models given different sparsity levels. Hence,
our initial model architecture is identical to the baseline
model, where we performed 10 epochs of neural architec-
ture search on the O search space consisting of 3 x 3 and
5 X b separable convolutions, 3 x 3 and 5 x 5 dilated sepa-
rable convolutions, 3 X 3 max and average pooling, identity
mapping, and a zero mapping. Learning rates and optimiz-
ers were also kept constant.

For Variant 2, we performed a redesigned DARTS
search on the CIFAR-10 dataset that iteratively prunes
architecture parameters after each epoch of our neural
architecture search, in conjuction with lottery ticket
hypothesis. Otherwise, all other hyperparameters of the
search were kept constant with the baseline model; our
search space O of candidate operations again consisted
only of 3 x 3 and 5 x 5 separable convolutions, 3 x 3 and
5 x b dilated separable convolutions, 3 X 3 max and average
pooling, identity mapping, and a zero mapping. Likewise,
all operations are stride one and padded to preserve spatial
resolution; the convolutional cell consisted of 7 nodes, and
was placed after a ReLU activation block and before batch
normalization. Learning rates and optimizers were also
kept constant.

Training Loop: For Variant 1 and a given sparsity level
p, we run a modified training loop for 20 epochs, where on
the 10th epoch we perform one-shot pruning that zeroes out
p parameters of the model, before re-initializing the model
parameters to 6. For Variant 2 and a given sparsity level
p, a standard training loop for 20 epochs is implemented;
there is no need to prune out parameters during train-time
since the initial neural-architecture-search leaves us with a
sufficiently pruned neural architecture.

Models trained from both variants were optimized with
respect to cross-entropy loss, and all other hyperparameters
were held constant. Both The training loop utilized a
stochastic gradient descent (SGD) + Momentum optimizer
with 0.9 momentum and 3.0 x 10~% weight decay; the
initial learning rate of 0.025 was adjusted according to a
cosine annealing scheduler. Batch size was set at 64.

Sparsity Levels: For each variant, we experimented with
8 different sparsity levels: 0.125, 0.25, 0.375, 0.5, 0.675,
0.75, 0.875, 0.95. This leaves us with 16 trained models
alongside our baseline model for analysis.

Evaluation Metrics: We evaluate our models on three
metrics:

» First, we evaluate the prediction accuracy of the mod-
els across sparsity levels p and both variants, in order
to determine which variant and sparsity levels leave us
with a strong-performing model.



» Second, we evaluate test inference time by reporting
the floating point operations per second (FLOPS) re-
quired; although the relative speed of models may be
apparent given the chosen sparsity levels, this analysis
presents with a better estimate of runtime.

* Finally, we evaluate train inference time by reporting
the total number of hours required for the 10 epochs
of neural architecture search and 20 epochs of the con-
current training loop. While we had attempted to keep
all hyperparameters regarding batch size, learning rate
and number of epochs constant across both variants, it
is important to acknowledge that the lottery ticket hy-
pothesis performs fundamentally different operations
in the two variants, which may result in drastically dif-
ferent training times.
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Figure 1. A visualization of model validation accuracy over epochs
for both variants. Note that Variant 1 is less robust to sparsity lev-
els; the sparsity levels of 0.95 is unable to reach past 50% accuracy
in the aftermath of the one-shot pruning. Meanwhile, Variant 2
performs particularly well with the sparsity level of 0.95, reaching
a validation accuracy of near 86.00% after the twenty epochs.

5.2. Prediction Accuracy and FLOPS

Overall, although not all sparsity levels and variant
choices were able to obtain the winning lottery ticket af-

ter 20 epochs, many of our models returned comparable ac-
curacy on the validation dataset. For Variant 1, the LNAS
performed best on medium to high sparsity levels, with the
models pruned on 0.5, 0.625, and 0.75 sparsity levels re-
turning a validation accuracy of over 76% compared to just
an average of around 70% for models trained on higher or
lower sparsity levels. An opposite trend is observed in Vari-
ant 2, where the LNAS performed stronger overall and best
on high and low sparsity levels. Surprisingly, we were able
to obtain the three winning tickets under Variant 2, with the
sparsity level of 0.95 obtaining a state-of-the-art validation
accuracy of 85.6% in 20 epochs. This outperforms even the
super baseline model we constructed with DARTS. More
specific results across all the sparsity levels can be seen in
Table 1 below.

We also present prediction accuracy on the validation set
over time in Figure 1. Due to the pruning and re-initializing
of weights to 6 in Variant 1, the drop in accuracy following
Epoch 10 may result in models with a given sparsity level
p being unable to attain high validation accuracy in the suc-
cessive train steps. More importantly, our experiment sug-
gests that if a model’s validation accuracy is immediately
robust to the re-initializing of weights, then it is likely that
the given sparsity level will be closer to a winning lottery
ticket.

In contrast, the validation accuracy curves for Variant 2
do not have large jumps in performance, resembling a stan-
dard training loop.

5.3. Variant Train Time Comparison

Though all experiments were run with the same num-
ber of epochs in both the search and train loops, Variant 1
has the lottery ticket hypothesis implemented in only the
training loop while Variant 2 has the same hypothesis im-
plemented in the search loop. This results in large differ-
ences in train time: as outlined in the Methods section, the
neural architecture search requires a longer runtime when
implemented alongside the lottery ticket hypothesis while
the training loop only requires a one-shot pruning of model
parameters over 20 epochs.

Hence, with all experiments done on a Tesla K80 GPU,
the initial neural architecture search took around 2 hours to
run for Variant 1 compared to about 5.2 hours for Variant 2;
differences in training time between the two variants were
negligible.

5.4. Discussion

The analysis on the differences in train time across vari-
ants (Section 5.3) suggests that the relative validation ac-
curacy sparsity levels cannot be compared across variants,
since one approach has the advantage of having a relatively
longer train time. However, general discussions on spar-
sity levels and training robustness can still give us a strong



Validation Accuracy (%)

Variant Sparsity Level Epoch 10 Epoch 20 FLOPS
Baseline N/A 74.04 78.90 752.355M
1 0.125 68.03 70.05 549.204M
(model parameter pruning) 0.25 67.50 72.13 473.034M
0.375 67.43 74.02 391.527M
0.5 68.32 76.52 315.356M
0.625 69.03 76.74 233.849M
0.75 70.54 76.15 157.678M
0.875 66.32 67.23 76.171M
0.95 66.58 46.43 84.050M
2 0.125 72.45 78.77 549.204M
(model architecture pruning) 0.25 72.28 78.04 473.034M
0.375 74.13 77.47 391.527M
0.5 69.11 74.12 315.356M
0.625 67.12 73.60 233.849M
0.75 71.80 79.86 157.678M
0.875 79.86 81.15 76.171M
0.95 80.14 85.59 84.050M

Table 1. Test inference time and validation accuracy across variants and multiple sparsity levels for both variants, compared alongside the
baseline model. Winning tickets are shown in bold. The result reported for validation accuracy at epochs 10 and 20 were based off of
highest validation accuracy over the course of training up until the stated epoch. For Variant 1, 20-epoch performance was consistently
strongest on sparsity levels between 0.375-0.75, with performance teetering off at the higher sparsity levels. Variant 2 observes an opposite

trend, with performance strongest at low and high sparsity levels.

indication on which variant performs better; there is suffi-
cient evidence to hypothesize how the proposed Algorithm
3 (generalized LNAS) would perform on the CIFAR-10
dataset.

Overall, Variant 1 is more sensitive to sparsity level. We
theorize that this is because the initial neural architecture
search is done just once and is focused on searching for a
general model with a certain range of parameters; as a re-
sult, only mid to high sparsity levels such as 0.5, 0.625 and
0.75 were close to reaching the lottery ticket hypothesis.
This hypothesis is supported by the sharp drop-off once the
sparsity level hits 0.875 and 0.95, when the validation ac-
curacy never eclipses the validation accuracy obtained prior
to the pruning and re-initializing of weights. In contrast,
Variant 2 does not suffer from the same issue, because the
architecture outputted from our lottery ticket hypothesis is
optimized on performing well with a lower number of pa-
rameters.

With this in mind, it is most likely that the generalized
LNAS will perform better than variants 1 and 2 individually.
By pruning network architecture parameters (Variant 2) be-
fore pruning model architecture parameters (Variant 1), our
concern with the sensitivity to sparsity level is mitigated;
the model architecture may overall be better suited for the
pruning process.

6. Conclusion

Our work shows that with the implementation of the
lottery ticket hypothesis alongside a differential architec-
tural search (DARTS) algorithm, we are able to obtain
sub-network architecture that achieve state-of-the-art per-
formance without expensive memory or time usage. Fur-
thermore, we show that both parts of a generalized LNAS
algorithm — the first part of pruning model parameters, and
the second part of pruning architecture parameters — have
strong performances in isolation and may be combined in
future work to create an even better sub-model.

While this work is a good start in the field of neural
network optimization, our future experiments aim to fur-
ther improve upon training efficiency. We aim to explore
the intersectionality of DARTS in other machine learning
subfields. We hope that by implementing algorithms such
as MetaNAS [2] that combine gradient-based neural archi-
tecture search (NAS) methods with gradient-based meta-
learning methods, we will be able to solve more challeng-
ing problems with just a fraction of the computational and
time-related resources required when compared to more tra-
ditional approaches.
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